Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
Visit old site
Home Print this page Email this page Small font size Default font size Increase font size
Users Online: 1250
Year : 2014  |  Volume : 6  |  Issue : 9  |  Page : 478-480

Drug-Induced gingival overgrowth: The genetic dimension

1 Department of Oral Pathology and Microbiology, Mahatma Gandhi Postgraduate Institute of Dental Sciences, Puducherry, India
2 Department of Periodontics, Shri Guru Gobind Singh Educational and Welfare Society, Burhanpaur, Madhya Pradesh, India
3 Department of Periodontics, RKDF Dental College and Research Centre, Bhopal, India
4 Department of Orthodontics and Dentofacial Orthopedics, Al Badar Rural Dental College and Hospital, Daryapur, Gulbarga, India
5 Department of Periodontics, Vaidik Dental College and Research Centre, Daman, India
6 Department of Dental and Implant Surgery, Pramukh Swami Medical College, Karamsad, Anand, India

Correspondence Address:
Noronha Shyam Curtis Charles
Department of Oral Pathology and Microbiology, Mahatma Gandhi Postgraduate Institute of Dental Sciences, Puducherry - 605 006
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/1947-2714.141651

Rights and Permissions

Background: Currently, the etiology of drug-induced gingival overgrowth is not entirely understood but is clearly multifactorial. Phenytoin, one of the common drugs implicated in gingival enlargement, is metabolized mainly by cytochrome P450 (CYP)2C9 and partly by CYP2C19. The CYP2C9 and CYP2C19 genes are polymorphically expressed and most of the variants result in decreased metabolism of the respective substrates. Aims: The present study was undertaken to investigate the influence of the CYP2C9*2 and *3 variant genotypes on phenytoin hydroxylation in subjects diagnosed with epilepsy from South India, thus establishing the genetic polymorphisms leading to its defective hydroxylation process. Materials and Methods: Fifteen epileptic subjects, age 9 to 60 years were included in the study. Among the study subjects, 8 were males and 7 were females. Genomic DNA was extracted from patients' blood using Phenol-chloroform method and genotyping was done for CYP2C9 using customized TaqMan genotyping assays on a real time thermocycler, by allelic discrimination method. The genetic polymorphisms *1, *2 and *3 on CYP2C9 were selected based on their function and respective allele frequencies in Asian subcontinent among the Asian populations. Results: CYP2C9*1*2 and CYP2C9*3/*3 were identified with equal frequency in the study population. There were seven subjects with CYP2C9*1/*2 genotype (heterozygous mutant), one subject with CYP2C9*1/*1 (wild type) and seven study subjects with CYP2C9*3/*3 (homozygous mutant). Conclusion: The results obtained in the present study will be helpful in the medical prescription purposes of phenytoin, and a more personalized patient approach with its administration can be advocated.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded347    
    Comments [Add]    
    Cited by others 1    

Recommend this journal